3.447 \(\int \frac{x^2 (a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{d+e x} \, dx\)

Optimal. Leaf size=352 \[ -\frac{\left (3 a^2 e^4+6 a c d^2 e^2+7 c^2 d^4\right ) \left (c d^2-a e^2\right ) \left (a e^2+c d^2+2 c d e x\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{128 c^3 d^3 e^4}+\frac{\left (-15 a^2 e^4-6 c d e x \left (7 c d^2-3 a e^2\right )-12 a c d^2 e^2+35 c^2 d^4\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{240 c^2 d^2 e^3}+\frac{\left (3 a^2 e^4+6 a c d^2 e^2+7 c^2 d^4\right ) \left (c d^2-a e^2\right )^3 \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{256 c^{7/2} d^{7/2} e^{9/2}}+\frac{x^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{5 e} \]

[Out]

-((c*d^2 - a*e^2)*(7*c^2*d^4 + 6*a*c*d^2*e^2 + 3*a^2*e^4)*(c*d^2 + a*e^2 + 2*c*d*e*x)*Sqrt[a*d*e + (c*d^2 + a*
e^2)*x + c*d*e*x^2])/(128*c^3*d^3*e^4) + (x^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(5*e) + ((35*c^2*
d^4 - 12*a*c*d^2*e^2 - 15*a^2*e^4 - 6*c*d*e*(7*c*d^2 - 3*a*e^2)*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/
2))/(240*c^2*d^2*e^3) + ((c*d^2 - a*e^2)^3*(7*c^2*d^4 + 6*a*c*d^2*e^2 + 3*a^2*e^4)*ArcTanh[(c*d^2 + a*e^2 + 2*
c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(256*c^(7/2)*d^(7/2)*e^(9/2
))

________________________________________________________________________________________

Rubi [A]  time = 0.328369, antiderivative size = 352, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.15, Rules used = {851, 832, 779, 612, 621, 206} \[ -\frac{\left (3 a^2 e^4+6 a c d^2 e^2+7 c^2 d^4\right ) \left (c d^2-a e^2\right ) \left (a e^2+c d^2+2 c d e x\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{128 c^3 d^3 e^4}+\frac{\left (-15 a^2 e^4-6 c d e x \left (7 c d^2-3 a e^2\right )-12 a c d^2 e^2+35 c^2 d^4\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{240 c^2 d^2 e^3}+\frac{\left (3 a^2 e^4+6 a c d^2 e^2+7 c^2 d^4\right ) \left (c d^2-a e^2\right )^3 \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{256 c^{7/2} d^{7/2} e^{9/2}}+\frac{x^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{5 e} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(d + e*x),x]

[Out]

-((c*d^2 - a*e^2)*(7*c^2*d^4 + 6*a*c*d^2*e^2 + 3*a^2*e^4)*(c*d^2 + a*e^2 + 2*c*d*e*x)*Sqrt[a*d*e + (c*d^2 + a*
e^2)*x + c*d*e*x^2])/(128*c^3*d^3*e^4) + (x^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(5*e) + ((35*c^2*
d^4 - 12*a*c*d^2*e^2 - 15*a^2*e^4 - 6*c*d*e*(7*c*d^2 - 3*a*e^2)*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/
2))/(240*c^2*d^2*e^3) + ((c*d^2 - a*e^2)^3*(7*c^2*d^4 + 6*a*c*d^2*e^2 + 3*a^2*e^4)*ArcTanh[(c*d^2 + a*e^2 + 2*
c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(256*c^(7/2)*d^(7/2)*e^(9/2
))

Rule 851

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Int[((f + g*x)^n*(a + b*x + c*x^2)^(m + p))/(a/d + (c*x)/e)^m, x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] &&
NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && ILtQ[m, 0] && In
tegerQ[n] && (LtQ[n, 0] || GtQ[p, 0])

Rule 832

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(g*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[1/(c*(m + 2*p + 2)), Int[(d + e*x)^(m
 - 1)*(a + b*x + c*x^2)^p*Simp[m*(c*d*f - a*e*g) + d*(2*c*f - b*g)*(p + 1) + (m*(c*e*f + c*d*g - b*e*g) + e*(p
 + 1)*(2*c*f - b*g))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 -
 b*d*e + a*e^2, 0] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
&&  !(IGtQ[m, 0] && EqQ[f, 0])

Rule 779

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((b
*e*g*(p + 2) - c*(e*f + d*g)*(2*p + 3) - 2*c*e*g*(p + 1)*x)*(a + b*x + c*x^2)^(p + 1))/(2*c^2*(p + 1)*(2*p + 3
)), x] + Dist[(b^2*e*g*(p + 2) - 2*a*c*e*g + c*(2*c*d*f - b*(e*f + d*g))*(2*p + 3))/(2*c^2*(2*p + 3)), Int[(a
+ b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b^2 - 4*a*c, 0] &&  !LeQ[p, -1]

Rule 612

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p +
1)), x] - Dist[(p*(b^2 - 4*a*c))/(2*c*(2*p + 1)), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{d+e x} \, dx &=\int x^2 (a e+c d x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx\\ &=\frac{x^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{5 e}+\frac{\int x \left (-2 a c d^2 e-\frac{1}{2} c d \left (7 c d^2-3 a e^2\right ) x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx}{5 c d e}\\ &=\frac{x^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{5 e}+\frac{\left (35 c^2 d^4-12 a c d^2 e^2-15 a^2 e^4-6 c d e \left (7 c d^2-3 a e^2\right ) x\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{240 c^2 d^2 e^3}-\frac{\left (\left (c d^2-a e^2\right ) \left (7 c^2 d^4+6 a c d^2 e^2+3 a^2 e^4\right )\right ) \int \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx}{32 c^2 d^2 e^3}\\ &=-\frac{\left (c d^2-a e^2\right ) \left (7 c^2 d^4+6 a c d^2 e^2+3 a^2 e^4\right ) \left (c d^2+a e^2+2 c d e x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{128 c^3 d^3 e^4}+\frac{x^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{5 e}+\frac{\left (35 c^2 d^4-12 a c d^2 e^2-15 a^2 e^4-6 c d e \left (7 c d^2-3 a e^2\right ) x\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{240 c^2 d^2 e^3}+\frac{\left (\left (c d^2-a e^2\right )^3 \left (7 c^2 d^4+6 a c d^2 e^2+3 a^2 e^4\right )\right ) \int \frac{1}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{256 c^3 d^3 e^4}\\ &=-\frac{\left (c d^2-a e^2\right ) \left (7 c^2 d^4+6 a c d^2 e^2+3 a^2 e^4\right ) \left (c d^2+a e^2+2 c d e x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{128 c^3 d^3 e^4}+\frac{x^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{5 e}+\frac{\left (35 c^2 d^4-12 a c d^2 e^2-15 a^2 e^4-6 c d e \left (7 c d^2-3 a e^2\right ) x\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{240 c^2 d^2 e^3}+\frac{\left (\left (c d^2-a e^2\right )^3 \left (7 c^2 d^4+6 a c d^2 e^2+3 a^2 e^4\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 c d e-x^2} \, dx,x,\frac{c d^2+a e^2+2 c d e x}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{128 c^3 d^3 e^4}\\ &=-\frac{\left (c d^2-a e^2\right ) \left (7 c^2 d^4+6 a c d^2 e^2+3 a^2 e^4\right ) \left (c d^2+a e^2+2 c d e x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{128 c^3 d^3 e^4}+\frac{x^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{5 e}+\frac{\left (35 c^2 d^4-12 a c d^2 e^2-15 a^2 e^4-6 c d e \left (7 c d^2-3 a e^2\right ) x\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{240 c^2 d^2 e^3}+\frac{\left (c d^2-a e^2\right )^3 \left (7 c^2 d^4+6 a c d^2 e^2+3 a^2 e^4\right ) \tanh ^{-1}\left (\frac{c d^2+a e^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{256 c^{7/2} d^{7/2} e^{9/2}}\\ \end{align*}

Mathematica [A]  time = 3.00127, size = 497, normalized size = 1.41 \[ \frac{\sqrt{(d+e x) (a e+c d x)} \left (\frac{\frac{5 \left (3 a^2 e^4+6 a c d^2 e^2+7 c^2 d^4\right ) \left (8 c^3 d^3 e^3 \sqrt{c d} \sqrt{c d^2-a e^2} (a e+c d x)^3 \sqrt{\frac{c d (d+e x)}{c d^2-a e^2}}-c d \left (c d^2-a e^2\right ) \left (-3 c^{5/2} d^{5/2} \sqrt{e} \left (c d^2-a e^2\right )^2 \sqrt{a e+c d x} \sinh ^{-1}\left (\frac{\sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a e+c d x}}{\sqrt{c d} \sqrt{c d^2-a e^2}}\right )-2 e^2 (c d)^{5/2} \sqrt{c d^2-a e^2} (a e+c d x)^2 \sqrt{\frac{c d (d+e x)}{c d^2-a e^2}}+3 e (c d)^{5/2} \left (c d^2-a e^2\right )^{3/2} (a e+c d x) \sqrt{\frac{c d (d+e x)}{c d^2-a e^2}}\right )\right )}{\sqrt{c d} \sqrt{c d^2-a e^2} \sqrt{\frac{c d (d+e x)}{c d^2-a e^2}}}-48 c^4 d^4 e^3 (d+e x) \left (5 a e^2+7 c d^2\right ) (a e+c d x)^3}{384 c^5 d^5 e^4 (a e+c d x)}+x (d+e x) (a e+c d x)^2\right )}{5 c d e} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(d + e*x),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*(x*(a*e + c*d*x)^2*(d + e*x) + (-48*c^4*d^4*e^3*(7*c*d^2 + 5*a*e^2)*(a*e + c*d*
x)^3*(d + e*x) + (5*(7*c^2*d^4 + 6*a*c*d^2*e^2 + 3*a^2*e^4)*(8*c^3*d^3*Sqrt[c*d]*e^3*Sqrt[c*d^2 - a*e^2]*(a*e
+ c*d*x)^3*Sqrt[(c*d*(d + e*x))/(c*d^2 - a*e^2)] - c*d*(c*d^2 - a*e^2)*(3*(c*d)^(5/2)*e*(c*d^2 - a*e^2)^(3/2)*
(a*e + c*d*x)*Sqrt[(c*d*(d + e*x))/(c*d^2 - a*e^2)] - 2*(c*d)^(5/2)*e^2*Sqrt[c*d^2 - a*e^2]*(a*e + c*d*x)^2*Sq
rt[(c*d*(d + e*x))/(c*d^2 - a*e^2)] - 3*c^(5/2)*d^(5/2)*Sqrt[e]*(c*d^2 - a*e^2)^2*Sqrt[a*e + c*d*x]*ArcSinh[(S
qrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + c*d*x])/(Sqrt[c*d]*Sqrt[c*d^2 - a*e^2])])))/(Sqrt[c*d]*Sqrt[c*d^2 - a*e^2]*S
qrt[(c*d*(d + e*x))/(c*d^2 - a*e^2)]))/(384*c^5*d^5*e^4*(a*e + c*d*x))))/(5*c*d*e)

________________________________________________________________________________________

Maple [B]  time = 0.061, size = 1560, normalized size = 4.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d),x)

[Out]

1/8*d*a^2/c*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)+3/16*d^3*a^2*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/
(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^(1/2)-1/8*d^5/e^4*c*(c*d*e*(d/e+x)^2+(a*e
^2-c*d^2)*(d/e+x))^(1/2)-1/4/e/c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)*a+9/128/e^4*d^5*c*(a*d*e+(a*e^2+c*d^2
)*x+c*d*e*x^2)^(1/2)-3/32*d/c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*a^2-21/128*d^3*ln((1/2*a*e^2+1/2*c*d^2+c
*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)*a^2-3/64/e^2*d^3*(a*d*e+(a*e^2+c*
d^2)*x+c*d*e*x^2)^(1/2)*a+1/5/e^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/d/c-3/8/e^2*d*(a*d*e+(a*e^2+c*d^2)*x
+c*d*e*x^2)^(3/2)*x+1/4*d^2/e*a*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)*x-1/4*d^4/e^3*c*(c*d*e*(d/e+x)^2
+(a*e^2-c*d^2)*(d/e+x))^(1/2)*x-1/8/d/c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)*x*a+3/64*e^2/d/c^2*(a*d*e+(a*e
^2+c*d^2)*x+c*d*e*x^2)^(1/2)*a^3-9/256/e^4*d^7*c^2*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^
2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)-1/16*e/d^2/c^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)*a^2+9/64/e^3
*d^4*c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x+3/64*e/c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x*a^2-15/64/
e*d^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x*a+1/16*d^7/e^4*c^2*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e
*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^(1/2)+3/128*e^4/d^3/c^3*(a*d*e+(a*e^2+c*d^2)*
x+c*d*e*x^2)^(1/2)*a^4+1/3*d^2/e^3*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(3/2)-3/16/e^3*d^2*(a*d*e+(a*e^2+c*
d^2)*x+c*d*e*x^2)^(3/2)+33/256/e^2*d^5*c*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x
+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)*a+9/128*e^2*d/c*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+
c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)*a^3+3/64*e^3/d^2/c^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x*a^3-3/
256*e^6/d^3/c^3*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c
)^(1/2)*a^5+3/256*e^4/d/c^2*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(
1/2))/(d*e*c)^(1/2)*a^4-1/16*d*e^2*a^3/c*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2
+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^(1/2)-3/16*d^5/e^2*a*c*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(
1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.92423, size = 1797, normalized size = 5.11 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d),x, algorithm="fricas")

[Out]

[-1/7680*(15*(7*c^5*d^10 - 15*a*c^4*d^8*e^2 + 6*a^2*c^3*d^6*e^4 + 2*a^3*c^2*d^4*e^6 + 3*a^4*c*d^2*e^8 - 3*a^5*
e^10)*sqrt(c*d*e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^
2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) - 4*(384*c^5*d^5*e^5*x^4
- 105*c^5*d^9*e + 190*a*c^4*d^7*e^3 - 36*a^2*c^3*d^5*e^5 - 30*a^3*c^2*d^3*e^7 + 45*a^4*c*d*e^9 + 48*(c^5*d^6*e
^4 + 11*a*c^4*d^4*e^6)*x^3 - 8*(7*c^5*d^7*e^3 - 12*a*c^4*d^5*e^5 - 3*a^2*c^3*d^3*e^7)*x^2 + 2*(35*c^5*d^8*e^2
- 61*a*c^4*d^6*e^4 + 9*a^2*c^3*d^4*e^6 - 15*a^3*c^2*d^2*e^8)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(
c^4*d^4*e^5), -1/3840*(15*(7*c^5*d^10 - 15*a*c^4*d^8*e^2 + 6*a^2*c^3*d^6*e^4 + 2*a^3*c^2*d^4*e^6 + 3*a^4*c*d^2
*e^8 - 3*a^5*e^10)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*
e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)) - 2*(384*c^5*d^5*e^5*x^4 - 105*
c^5*d^9*e + 190*a*c^4*d^7*e^3 - 36*a^2*c^3*d^5*e^5 - 30*a^3*c^2*d^3*e^7 + 45*a^4*c*d*e^9 + 48*(c^5*d^6*e^4 + 1
1*a*c^4*d^4*e^6)*x^3 - 8*(7*c^5*d^7*e^3 - 12*a*c^4*d^5*e^5 - 3*a^2*c^3*d^3*e^7)*x^2 + 2*(35*c^5*d^8*e^2 - 61*a
*c^4*d^6*e^4 + 9*a^2*c^3*d^4*e^6 - 15*a^3*c^2*d^2*e^8)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^4*d^
4*e^5)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError